a2 United States Patent

Kiperberg et al.

US009195821B2

US 9,195,821 B2
Nov. 24, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)
(72)

(73)

")

@
(22)

(65)

(1)

(52)

(58)

SYSTEM AND METHODS FOR REMOTE
SOFTWARE AUTHENTICATION OF A
COMPUTING DEVICE

Applicant: TRULY PROTECT OY, Jyviskyld (FI)

Inventors: Michael Kiperberg, Ashkelon (IL);
Amit Resh, Even Yehuda (IL); Nezer

Zaidenberg, Hod Hasharon (IL.)

Assignee: Truly Protect QY, Jyvaskyla (FI)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by O days.

Appl. No.: 14/088,406

Filed: Nov. 24, 2013

Prior Publication Data

US 2015/0150084 A1 May 28, 2015

Int. CL.
GO6F 7/04
GO6F 21/44
U.S. CL
CPC GO6F 21/44 (2013.01)
Field of Classification Search

CPC
USPC
See application file for complete search history.

(2006.01)
(2013.01)

GOGF 21/44
726/3

300 ~N
¥

(56) References Cited

U.S. PATENT DOCUMENTS

7,877,596 B2* 12011 Foo Kuneetal. ... 713/153
8,112,485 B1* 2/2012 Cooleyetal. 709/206
2006/0041642 Al* 2/2006 Rosneretal. 709/220
2007/0300070 Al* 12/2007 Shen-Orr et al. . 713/176
2013/0074150 Al* 3/2013 So0h00ccoovvviiiiiniinns 726/3

* cited by examiner

Primary Examiner — Mohammad W Reza
(74) Attorney, Agent, or Firm — Yagod Morris & Associates

(57) ABSTRACT

The current disclosure relates to techniques for system and
methods for software-based management of remote software
authentication of at least one entity machine, addressing vari-
ous vulnerabilities of software authentication based upon the
genuinity based scheme. The disclosure is using challenge
execution on at least one suspect machine, providing a tech-
nique for CPU event monitoring of a combined count of at
least two events monitored on the entity machine during
execution of the authentication challenge. The authentication
challenge allows further detection functionality of virtual
machine or a hypervisor installed. The techniques measures
execution time of authentication challenge, comparing the
received challenge result with the expected challenge result
and accordingly rejects or allows the entity machine through
the authentication process.

16 Claims, 8 Drawing Sheets

CLIENT COMPUTER
302

HELLO, CPU & OS VERSIONS |

‘ RUN CHALLENGE ‘

310\

PUBLIC KEY ENCRYPTION
(CHALLENGE RESULTS &
RANDOM MATERIAL)

< START TIMER > &,
308 l—r:J
) 306

AUTHORITY
SERVER
l 304
;

HELLO, CERTIFICATE,
VIRTUAL MAPPING &
CHALLENGE

RANDOM MATERIAL
ENCRYPT (SOFTWARE
DECRYPTION KEY)

US 9,195,821 B2

Sheet 1 of 8

Nov. 24, 2015

U.S. Patent

100
\

™ m

= H

nzl| 3 :

: — |85
mmm 0O m

o > | EW !
o == 23 “

wn =D o ,

"AUn <t EA i
cll5¢2 “

= == !

= oo} H

< R 1

— |88 “

A 2 i

- = N

o e e =
5 =

1/ M H — !
' a5 Z !
z C 4 “
S = =h= 2
°F Z5 m
25>l ag “
CM TI H
Z > i
m mN '
aha m

- @ I
= &) "
oy H

Fig1l

US 9,195,821 B2

Sheet 2 of 8

Nov. 24, 2015

U.S. Patent

>

=& o

Q> —
o

=B A\

o« ==

<€ s N

@)

= 3 2

= IP 29
= < o
ao 55 o
>~ = 53 N
RWm 2o
O M ’ m
Z & —

CLIENT
COMPUTER

- =_

TP
§U
Truly Protect

o
=)
2
2
S
3
ot
=
m

SOFTWARE
Vendor

208
)
>
214

Fig 2

U.S. Patent Nov. 24, 2015 Sheet 3 of 8 US 9,195,821 B2

| CLIENT COMPUTER AUTHORITY
302 | SERVER i
A | i
i | HELLO, CPU & OS VERSIONS | !
| | 304
i v f E
| | HELLO, CERTIFICATE, i
; VIRTUAL MAPPING & ;
| | CHALLENGE ;
108 | | < STARTTIMER > ;J :
- ' | 306 :
RUN CHALLENGE | i
i 310 !
! N A 4 I ‘
i PUBLIC KEY ENCRYPTION | | ;
! (CHALLENGE RESULTS & ;
: RANDOM MATERIAL) | ;
i |
i 312
i I y [;
i | RANDOM MATERIAL ;
; ENCRYPT (SOFTWARE ;
: | DECRYPTION KEY) ;

U.S. Patent Nov. 24, 2015 Sheet 4 of 8 US 9,195,821 B2
T MEMORY 440 i
\ CPU 420 . ;
! 443 USER |
| -3 N 442 ;
1 =~~~] 1
i CORE F- Encrypted ;
i 424 . CACHE Executable i
! “-1. _ 4 1N < Runtime !
i BUS i
i Registers N NTY
! 426 a | 430 i
| : KERNEL !
! TLB + . 444 :
| 08 N * T i
i \\\ \\"-' ”r" \\ i
: S e 44 !
5 ° |

400 / Fig. 4A
| 45] LOAD ENCRYPTED SEGMENT TO BE EXECUTED 4= 450
A , , :
| BY CPU ;
| 452 ! i
i " CPUDELEGATES ENCRYPTED SEGMENT TO :
i KERNEL MODE DRIVER i
| 453\\ STOP PRE-EMPTION AND ALL INTERRUPTS BY
; KERNEL DRIVER !
L 454 '
. RETRIEVE DECRYPTION KEY ;
| 455 ! i
i "X DECRYPT INSTRUCTION SEGMENT IN CACHE ;
456 v i
. EXECUTE INSTRUCTIONS ;
| 457 v 5
- DISCARD CACHE AND RESTORE PRE-EMPTION
| AND INTERRUPTS ;

__

U.S. Patent Nov. 24, 2015 Sheet 5 of 8 US 9,195,821 B2

500A

/

510A\ GENERATE AT LEAST ONE AUTHENTICATION
~ CHALLENGE

520A\ COMPUTE AN EXPECTED CHALLENGE RESULT

FOR COMPARISON

'

530A\ SEND AUTHENTICATION CHALLENGE TO AT
LEAST ONE ENTITY MACHINE

540A v
L START TIMER TO MEASURE EXECUTION TIME

v

RECEIVE A CHALLENGE RESULT FROM THE
ENTITY MACHINE

v
560‘5\‘ STOP TIMER AND RECORD EXECUTION TIME OF

AUTHENTICATION CHALLENGE

v

COMPARE RECEIVED RESULT SET WITH
EXPECTED RESULT

i

550A
N

570A
L

YES MEET COMPARISON
CRITERIA?
580A

550 | o34 ,,
| ACCEPT AUTHENTICATION | REJECT AUTHENTICATION

Fig. 5A

U.S. Patent Nov. 24, 2015 Sheet 6 of 8 US 9,195,821 B2

500B

;

5 103\ RECEIVE AT LEAST ONE AUTHENTICATION
~ CHALLENGE

'

52013\ INITIALIZE A SET OF HARDWARE COMPONENTS
- TO A KNOWN STATE

'

5303\ ASSIGN A HARDWARE-COUNTER TO MONITOR A
- FIRST EVENT

'

540B | MONITOR THE FIRST EVENT AGAINST AN EVENT
CONDITION

A

EVENT CONDITION
MET?

v

508 [SWITCH THE HARDWARE-COUNTER TO MONITOR
| THE NEXT EVENT

S60B | MONITOR THE NEXT EVENT AGAINST THE
i UPDATED EVENT CONDITION

Fig. 5B

U.S. Patent Nov. 24, 2015 Sheet 7 of 8 US 9,195,821 B2

__

GENERATE CHECKSUM STRUCTURE

__

L 610A
i~ MONITOR MEMORY REGION CONTAINING |
; SOFTWARE CODE SECTION i
| 620A e | oo
| < MONITOR VALUES OF HARDWARE COUNTERS | !
L630A I oo
;=L MONITOR MACHINE SPECIFIC REGISTERS (MSR) | !
i | VALUES P

U.S. Patent Nov. 24, 2015 Sheet 8 of 8 US 9,195,821 B2

e 700A
710A\ SET A CHALLENGE FUNCTION FOR EXECUTION
- ON SUSPECT MACHINE
7202 | OBTAIN AN EXPECTED CHALENGE RESULT FOR
- TESTING
730A\ SEND CHALLENGE FUNCTION TO SUSPECT
- MACHINE
v
740/*\ MEASURE EXECUTION TIME OF CHALLENGE
" FUNCTION
750/*\ RECEIVE A CHALLENGE AUTHENTICATION
RESULT FROM THE SUSPECT MACHINE
CHECK EXECUTION NO
TIME?
755A
7602 _|cCHECK CHALLENGE RESULT AGAINST EXPECTED
RESULT
YES MEET COMPARISON
CRITERIA?
765A
704] 7808 |
[ACCEPT MACHINE | REJECT MACHINE —

Fig. 7

US 9,195,821 B2

1
SYSTEM AND METHODS FOR REMOTE
SOFTWARE AUTHENTICATION OF A
COMPUTING DEVICE

FIELD OF THE INVENTION

The disclosure herein relates to system and methods for
software-based authentication of a remote computing device.
In particular, the disclosure relates to authentication chal-
lenge execution combined with CPU event monitoring, for
virtual machine and hypervisor detection to determine
authenticity, confidentiality and integrity of a remote com-
puting device.

BACKGROUND OF THE INVENTION

The modern digital era and the rapid development of com-
puter and internet technologies provide various cross-bound-
ary opportunities, with an essential layer of computer net-
works to allow for digital communication. Such platforms
require IT systems that guarantee authenticity, confidential-
ity, integrity, privacy, as well as availability. The need of
reducing vulnerability and risk of unauthorized access to a
network system is associated with various remote authenti-
cation services, as a more common approach to maintaining
server security, mainly using hardware-based methods.

Software-based solutions and methods for remote authen-
tication to establish trust between two entities, controlling
access to computer or network resources, present a long-
standing problem in computer security.

For example, digital content such as games, videos and the
like, in a networked configuration may be susceptible to unli-
censed usage and may be protected by a licensing verification
program; such licensing programs may be circumvented by
reverse engineering. Preventing the circumventing of a soft-
ware licensing program may use a method of “obfuscation”,
making software instructions difficult for humans to under-
stand by deliberately cluttering the code with useless, con-
fusing pieces of additional software syntax, are still readable
to the skilled hacker.

Additionally, encryption may be implemented for protect-
ing digital content products, using a unique key to convert the
software code to an unreadable format. Such protection may
only be effective when the unique key is kept secured and
unreachable to an unwanted party. Hardware-based methods
for keeping the unique key secured are possible, but may have
significant deficiencies, mainly due to an investment required
in dedicated hardware on the user side, making it costly, and
therefore, impractical. Furthermore, such hardware methods
have been successfully attacked by hackers.

Thus, methods of software-based authentication of a
remote machine, providing controlled and secured access is
required in many aspects of computer related technologies.
There is therefore a need for a better technique for software-
based authentication solution. The present disclosure
addresses this need.

SUMMARY OF THE INVENTION

Schemes for software authentication and virtual machine
detection have been proposed as software-only solution. For
example, a service provider, the authority, may establish a
genuinity of a remote machine, the entity, by sending a chal-
lenge to be executed by the entity, containing checksum func-
tionality. Accordingly, by passing the challenge test, the
authority may safely provide services to entity machine. The
genuinity test may embed hardware specific side effects into

10

15

20

25

30

35

40

45

50

55

60

65

2

the checksum. The entity may compute a checksum over a
trusted kernel, combining data values of the code with archi-
tecture-specific side effects of the computation itself. For
example, values such as the Translation Look-aside Buffer
(TLB) miss count, level-1 and level-2 cache hits and miss
counts. Although such a model may reduce the risk of unau-
thorized access, it may be limited and vulnerable to various
attacks.

The disclosure herein relates to system and software-based
management of remote software authentication based upon
challenge execution on at least one suspect machine, provid-
ing a technique for CPU event monitoring using performance
hardware counters of a set of at least two events, combined
with detection functionality of virtual machine or a hypervi-
sor installed.

According to one aspect of the disclosure, a method is
hereby taught for authenticating at least one entity machine
being in communication with an authentication server, the
method comprising: generating at least one authentication
challenge; obtaining an expected challenge result comprising
a calculated result combined with at least one hardware count
value for the at least one authentication challenge; sending the
authentication challenge to the at least one entity machine;
starting a timer; receiving a challenge result from the entity
machine; stopping the timer thereby recording an execution
time for the entity machine; rejecting the entity machine ifthe
execution time is longer than the execution time threshold
value; comparing the received challenge result with the
expected challenge result; and rejecting the entity machine if
the received challenge result does not match the expected
challenge result; wherein the at least one hardware count
value comprises a combined count of at least two events
monitored on the entity machine during execution of the
authentication challenge.

The authentication method, wherein referenced a com-
bined count of at least two events, further comprises the steps
of: initializing a set of hardware components to aknown state;
assigning a hardware-counter to count a first event during
execution of the at least one authentication challenge; moni-
toring the first event against an event condition; switching the
hardware-counter to monitor at least a second event, when the
hardware-counter meets the event condition. The combined
count of at least two events further comprises the steps of
updating the event condition to match the switched hardware-
counter; and incorporating final hardware-counter readings
into the challenge result.

Accordingly, the authentication method, further compris-
ing: monitoring an n” event against an n” event condition;
switching the hardware-counter to monitor at least an (n+1)”
event, when the hardware-counter meets the n” event condi-
tion.

Further, the authentication method wherein referencing a
combined count of at least two events, further comprises the
step of updating said event condition to match switched said
hardware-counter.

Optionally, it is noted that wherein referencing event con-
dition is configured to be a threshold value associated with a
specific event.

Optionally, it is noted that wherein referencing event con-
dition is configured to be a pre-determined condition associ-
ated with a specific event.

Additionally, the authentication method wherein at least
one of the events monitored on the entity machine is an event
affected by the presence of a hypervisor such that if a hyper-
visor is present, the received challenge result will not match
the expected challenge result and the entity machine is
rejected.

US 9,195,821 B2

3

Additionally, the authentication method wherein at least
one of the events monitored on the entity machine comprises
a machine specific register.

Additionally, the authentication method may further com-
prise the step of detecting hypervisor installed on the entity
machine, and may comprise the steps of: initiating a check-
sum value; incorporating checksum of the authenticating
software memory regions into the checksum value; incorpo-
rating checksum of a selected set of hardware counters into
the checksum value; incorporating checksum of a set of
machine specific registers into the checksum value, wherein
the set of machine specific registers is derived from current
checksum value; monitoring the set of machine specific reg-
isters and the selected set of hardware counters; and testing
the presence of the hypervisor.

Accordingly, wherein referencing the step of testing pres-
ence of the hypervisor, further comprises the steps of: reject-
ing the entity machine if Extended Feature Enable Register
(EFER) of the set of machine specific registers is having a flag
set to a value of 1; and rejecting the entity machine if the set
of hardware counters does not match the checksum as incor-
porated into the checksum value.

It is noted that the authentication method, wherein refer-
encing expected challenge result may be generated by execut-
ing the authentication challenge on a machine identical to the
entity machine.

According to another aspect of the disclosure, a method is
hereby taught for detecting a virtual machine, the method
comprising: setting a challenge function to be executed on a
suspect machine within a time limit; obtaining an expected
challenge result; transmitting the challenge function to the
suspect machine; measuring an execution time of the chal-
lenge function; receiving a challenge result from the suspect
machine; and comparing received challenge result with the
expected challenge result; accepting the suspect machine if
the challenge result matches the expected challenge result
and the execution time is less than the time limit. Accordingly,
wherein the challenge function is monitoring at least two
hardware counting events whereby the execution time is less
than the time limit.

As appropriate, the method of detecting a virtual machine,
wherein referencing a challenge function, comprising the
steps of: initializing a set of hardware components to a known
state; using a hardware-counter to count a first event during
execution of the challenge function; monitoring the hardware
counter against an event condition; switching the hardware-
counter to monitor at least a second event, when the hard-
ware-counter meets the event condition; updating the event
condition to match the switched hardware-counter; and incor-
porating final hardware-counter readings into the challenge
result.

Optionally, the method of detecting a virtual machine,
wherein referencing event condition is configured to be a
threshold value associated with a specific event.

Optionally, the method of detecting a virtual machine,
wherein referencing event condition is configured to be a
pre-determined condition associated with a specific event.

It is noted that in order to implement the methods or sys-
tems of the disclosure, various tasks may be performed or
completed manually, automatically, or combinations thereof.
Moreover, according to selected instrumentation and equip-
ment of particular embodiments of the methods or systems of
the disclosure, some tasks may be implemented by hardware,
software, firmware or combinations thereof using an operat-
ing system. For example, hardware may be implemented as a
chip ora circuit such as an ASIC, integrated circuit or the like.
As software, selected tasks according to embodiments of the

10

15

20

25

30

35

40

45

50

55

60

65

4

disclosure may be implemented as a plurality of software
instructions being executed by a computing device using any
suitable operating system.

In various embodiments of the disclosure, one or more
tasks as described herein may be performed by a data proces-
sor, such as a computing platform or distributed computing
system for executing a plurality of instructions. Optionally,
the data processor includes or accesses a volatile memory for
storing instructions, data or the like. Additionally or alterna-
tively, the data processor may access a non-volatile storage,
for example, a magnetic hard-disk, flash-drive, removable
media or the like, for storing instructions and/or data. Option-
ally, a network connection may additionally or alternatively
be provided. User interface devices may be provided such as
visual displays, audio output devices, tactile outputs and the
like. Furthermore, as required user input devices may be
provided such as keyboards, cameras, microphones, acceler-
ometers, motion detectors or pointing devices such as mice,
roller balls, touch pads, touch sensitive screens or the like.

BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the embodiments and to show
how it may be carried into effect, reference will now be made,
purely by way of example, to the accompanying drawings.

With specific reference now to the drawings in detail, it is
stressed that the particulars shown are by way of example and
for purposes of illustrative discussion of selected embodi-
ments only, and are presented in the cause of providing what
is believed to be the most useful and readily understood
description of the principles and conceptual aspects. In this
regard, no attempt is made to show structural details in more
detail than is necessary for a fundamental understanding; the
description taken with the drawings making apparent to those
skilled in the art how the several selected embodiments may
be put into practice. In the accompanying drawings:

FIG. 1 is a schematic block diagram of the main module
components representing the system architecture for software
copy-protection used for secure software distribution;

FIG. 2 is a schematic block diagram of the main compo-
nents of a distributed computing system supporting software
copy-protection used for secure software distribution;

FIG. 3 is a flowchart representing selected actions of a
method for performing key exchange communication
between a client system computer and an authority server;

FIG. 4A is a schematic block diagram representing the
main components of a client system CPU configured with a
kernel driver combined showing a possible execution flow of
protected code instructions;

FIG. 4B is a flowchart representing selected actions of a
method for executing encrypted code instructions in a pro-
cessor’s CPU;

FIG. 5A is a flowchart representing selected actions of a
method for authenticating a remote entity machine, per-
formed on an authentication server side;

FIG. 5B is a flowchart representing selected actions of a
method for executing authentication challenge on a suspect
machine;

FIG. 6 is a flowchart representing selected actions of a
method for generating checksum utilizing memory regions,
hardware counters readings and machine specific registers,
performed on suspect machine side; and

FIG. 7 is a flowchart representing selected actions of a
method for analyzing suspect machine data performed on
authentication server side, for determining acceptance or
rejection of suspect machine.

US 9,195,821 B2

5
DETAILED DESCRIPTION OF THE INVENTION

Authentication has become more pervasive and important
in the technology space addressing a variety of areas such as
banking, online commerce, cloud computing, licensing, soft-
ware as a service (SaaS) and the like. The challenges of
implementing and maintaining secure authentication has
grown extensively, especially as attackers are getting more
sophisticated, trying to attack corporations and private per-
sons to steal critical business and personal information.

Additionally, hardware solutions are still dominating the
market as organizations consider the physical layer protection
to provide higher security. Yet, the tendency is changing and
software-based authentication solutions become more attrac-
tive because of lower costs, convenience, disaster recover
ability and easy scalability.

Aspects of the present disclosure relate to a technique for
software-based authentication of a remote computing device
based on challenge execution. The current disclosure offers a
different approach to software authentication coupled with
virtual machine and hypervisor detection to guarantee
authenticity, confidentiality and integrity of the remote com-
puting device. In particular, the disclosure provides a soft-
ware authentication technique of at least one entity machine
being in communication with an authentication server, com-
prising a challenge result analysis, where challenge is
executed on suspect entity machine. The executed authenti-
cation challenge is based on check-summing specific
memory regions combined with hardware counting of at least
two events monitored on the suspect entity machine during
execution of the authentication challenge.

Additional aspects of current disclosure relate to virtual
machine (VM) analysis and hypervisor detection. Security of
virtual machines and virtualized infrastructures are vulner-
able to hacker attacks. For example, a hacker may take over a
VM and thereafter use the VM to attack other VMs; on the
same host machine or on other networked machines. Addi-
tionally or alternatively, the presence of a hypervisor layer
may introduce a further severe security impact. The current
disclosure answers the need for detecting virtual machines
and installed hypervisors.

Embodiments described herein, disclose a remote soft-
ware-based authentication system and methods based on of
challenge execution combined with hardware counting of at
least two events monitored on a suspect machine, with added
consideration of side effects functionality and VM and hyper-
visor detection, operable to be incorporated into the genuinity
based scheme.

Side Effects:

In computer science, every executed function has some
side-effect, resulting from using memory, taking CPU time
and the like. A function or expression is said to have a side-
effect if, in addition to returning a value, it also modifies some
state or has an observable interaction with calling functions of
the outside world. For example, the modern Pentium proces-
sors have a large quantity of performance events that may be
used as side-effects. However, there are a limited number of
hardware counters to count those events. In high-end proces-
sors there are 8 counters while in the lower-end only 2
counters.

The term side-effects may refer to any parallel process
which are time consuming to emulate and may further modify
the inner state of the CPU, such as storing data, bringing data
to the cache, evicting data from the cache or the like. It is
further noted that some modifications of the state of the CPU
may increment the corresponding hardware counter.

10

20

35

40

45

50

6

It is particularly noted that even though, there may be
limited number of hardware counters, efficient utilization
may contribute to perform the checksum functionality based
upon a much larger unlimited hardware available side-effects,
providing secured process of software authentication.

The process may initialize a large amount of hardware
components to a known state (state zero), setting up a hard-
ware counter to count one single event, monitoring the hard-
ware counter against a condition upon which the counter is
switched to monitoring a different event, while the latter step
of switching and monitoring is repeated.

For example, the following flow of events: flushing the data
cache; flushing the Data Translation Look-aside Buffer
(DTLB) cache; setting a hardware counter to count Transla-
tion Look-aside Buffer (TLB) misses while check-summing
the kernel space. When hardware counter reaches some
threshold or fulfills a predefined condition, switching the
hardware counter to count data-cache misses and continue
check-summing.

It is noted that the step of monitoring and switching may
further continue according to a preset configuration of the
challenge.

The repeated monitoring state brings the CPU to a different
state with regard to the initial state prior to the execution of the
challenge. Thus, counting of cache misses from that point on
is effected by that state. Additionally, the point where
counters were switched to monitor a different event may be
governed by a function side-effect.

Therefore, a virtual machine executing the challenge may
need to simulate both, the DTLB and the data cache through-
out the entire sequence. While the genuinity based scheme
machine performs such monitoring with a single hardware
counter which may be used to “cover” many performance
events. Additionally or alternatively, the use of two hardware
counters may introduce further complications to a virtual-
machine implementation by allowing the hardware counter
switch event to be a function of both hardware counters align-
ing on a certain rule. For example, (Counter-1>Threshold &&
counter-2 divisible by 7), may achieve a true random
sequence of hardware counter switching.

Virtual Machine Detection:

A virtual machine (VM) is a software implementation of a
computing environment in which an operating system (OS) or
program may be installed and run. A VM typically emulates a
physical computing environment, but requests for CPU,
memory, hard disk, network and other hardware resources are
managed by a virtualization layer which translates these
requests to the underlying physical hardware. The virtualiza-
tion layer, such as a hypervisor (as described hereinafter) or a
virtualization platform runs on top of a client or server oper-
ating system. This operating system is known as the host OS.
The virtualization layer may be used to create many indi-
vidual, isolated VM environments running on the same physi-
cal hardware.

Itis noted that the target computer system may be validated
to be a real machine, not a virtual machine (VM) such as
emulators, simulators, or having any hypervisors installed.
The architecture of the systems and methods described herein
may provide the necessary tools for such validity check.
Hypervisor Detection:

A hypervisor is a software program, executed by the CPU,
running as privileged code with privileges greater than those
granted to the operating system (OS). The hypervisor may
allow multiple operating systems, referred to as guest oper-
ating system, to share a single hardware host, acting as a
virtual machine manager. Fach such operating system
appears to have the host’s processor, memory, and other

US 9,195,821 B2

7

resources all to itself. However, the hypervisor is actually
controlling the host processor and resources while allocating
what is needed to each operating system in turn, making sure
that the guest operating systems (also called virtual
machines) cannot disrupt each other.

The hypervisor may be able to intercept accesses to impor-
tant resources inside the CPU, and may disallow access to the
resource or make the resource look differently from what it
actually appears to.

It is noted that hypervisors introduce a new layer of privi-
leged software code that may present a target for hacker
attacks. A hacker compromises the hypervisor, may control
all data traversing with full abilities to view, redirect, or spoof
anything. Guest operating systems may have no way of know-
ing they are running on a compromised platform. This “hyper
jacking” scenario may represent a severe risk in large virtu-
alization platforms that offer 10, 50, or even hundreds of
hosted servers running on a single hardware unit.

It is particularly noted that virtualized environments may
create a one-to-many attack scenario when the host machine
is attacked, and the attacker gets root or administrator privi-
leges over the hardware.

It is further noted that, the hypervisor may act as the man-
in-the-middle in the man-in-the-middle attack, where in such
attack a malicious actor may insert him/herself into a conver-
sation between two parties, impersonating both parties to
gains access to information that the two parties were trying to
send to each other.

Therefore, there is a need to assure that this kind of attack
cannot be performed, and additionally, guarantee that any
new hypervisor to be installed is authentic.

System’s Architecture:

It is noted that the system software architecture provides
the development and runtime environments for executing
checks of the protected data-blocks successfully, avoiding
bypassing or circumventing by any unwanted party.

The distributed system’s architecture, as described herein-
after with reference to FIG. 1, comprises of three main mod-
ule components: an encryption module component 102, a
runtime module component 104 and an authority server com-
ponent 106. The encryption module 102 may allow for inte-
gration with the customer’s development environment to pro-
duce encrypted source code instead of standard executable
machine code. The runtime module 104 is structured in two
parts, where the first sub-component 108 may be injected into
the product encrypted executable and the second sub-compo-
nent 110 may act as the kernel driver on the target computer
system, operable in kernel mode (privilege ring 0). The
authority server 106 is configured to provide the necessary
decryption key for the software to operate correctly.

Optionally, encrypting the whole source code is possible,
but generally does not contribute effectively and may further,
incur a degree of performance degradation. In practice,
encrypting only a set of critical executable functions to allow
for the license check and software to function properly, may
be sufficient.

According to embodiments of the current disclosure, this
section of protected code may only be stored in its decrypted
state within the cache of the CPU.

Additionally, when encrypting a product source code, the
encryption module component may inject elements of the
runtime code and data-structures into the created executable.
Accordingly, the resulting executable may be operable to
load, run and automatically kick-start the runtime module
component and execute successfully, if the correct decryption
key is available from the authority server. Since the encryp-
tion may use modern cryptography, such as using Advanced

10

15

20

25

30

35

40

45

50

55

60

65

8

Encryption Standard (AES) or the like, reverse engineering of
the critical encrypted functions may not be possible, as the
industry considers AES or the like to be practically unbreak-
able.

As appropriate, once associated software is executed, the
runtime module component established secured communica-
tion channel with the authority server to obtain the associated
decryption key for software operability, as described herein-
after in FIGS. 1 and 2. Accordingly, for providing the neces-
sary decryption key, the authority server may validate the
request is arriving from a “real” target computer system and
not from a virtual machine. As appropriate, any requests from
a virtual machine, emulator, simulator or any possibly run-
ning hypervisor, may be rejected.

Where appropriate, the authority server may further vali-
date that the target computer system is equipped with oper-
ating system (OS) running a known OS kernel.

Additionally or alternatively, the authority server may vali-
date that the target computer is clean of potentially malicious
drivers.

Additionally or alternatively, the authority server may vali-
date that the target computer system is representing an autho-
rized/licensed user, namely, a paying customer.

It may be noted that the kernel driver may be initially
installed on a target computer system, using conventional
driver installation methods.

It may further be noted that the kernel driver may be freely
distributed, in various forms such as part of a protected soft-
ware installation process or the like.

Systems and methods of the disclosure are not limited to
the details of construction and the arrangement of the com-
ponents or methods set forth in the description or illustrated in
the drawings and examples. The systems and methods of the
disclosure may be capable of other embodiments or of being
practiced or carried out in various ways.

Alternative methods and materials similar or equivalent to
those described hereinafter may be used in the practice or
testing of embodiments of the disclosure. Nevertheless, par-
ticular methods and materials are described herein for illus-
trative purposes only. The materials, methods, and examples
are not intended to be necessarily limiting.

System’s Embodiments:

Reference is made to the system block diagram of FIG. 1
showing schematic distributed system architecture represen-
tation 100 of the main module components.

The distributed system’s architecture 100 may provide the
platform for various secured software functionalities such as
software integration, encrypted packaging, software trigger-
ing and flow management, providing secured communication
channel to allow run-time authentication, obtaining/storing/
hiding of decryption keys, validation and product integrity
checking and the like.

The distributed system’s architecture 100 includes an
encryption module component 102 operable to integrate with
the product development environment, a runtime module
component 104 and an authority server component 106, con-
figured to manage secured communication channel with a
client computer system providing decryption key, to allow
secured functioning and operability of the encrypted code
sections. The runtime module component 104 further
includes two sub-components: an injected code sub-compo-
nent 108 and a kernel driver sub-component 110.

The encryption module 102 may inject the runtime sub-
component 108 including runtime code elements and data-
structures into the software executable 212 (FIG. 2). The
resulting encrypted software executable 216 (FIG. 2) may be
operable to load, run and automatically kick-start the runtime

US 9,195,821 B2

9

module. The second sub-component 108 of the runtime mod-
ule may be operable as a kernel driver, functioning in the
kernel space and may be operable to establish a secured
communication channel with the authority server, to manage
handling of the decryption keys, for example.

Optionally, the decryption key may be obtained upon every
request to decrypt an encrypted code segment.

Alternatively, or additionally, the decryption key may be
obtained and stored in a CPU register for further usage.
Accordingly, upon the next request for the decryption key,
may verity the availability of the key in the CPU register and
only if not present, a further request may be issued to the
authority server 106. Optionally, the number of uses of a
stored decryption key may be limited such that the decryption
key is deleted from the registry when the number of usages
exceeds a maximum threshold number. Once the maximum
threshold is reached, the decryption key may be automatically
deleted and upon the next request a new decryption key may
be obtained from the authority server, possibly following a
verification procedure.

Reference is now made to the system block diagram of
FIG. 2 showing schematic representation of the main com-
ponents of a distributed computing system 200, based on
disclosure’s module components, supporting software copy-
protection used for secure software distribution. According to
various embodiments, such a software distribution system
may for example be used for distributing media such as gam-
ing software, audio software, video software, application
software and the like.

The distributed computing system 200 may be used to
facilitate the authentication of a client computer system to
provide protected license checking while supporting func-
tionality of hiding the decryption keys and secured operabil-
ity of a third party software products’ vendor.

The distributed computing system 200 includes a client
computer 202, in communication with an authority server 204
through communication network 206. The software vendor
208 produces a software product comprising a set of execut-
able computer instructions 210 coupled with injected
encrypted startup code 212 to form an encrypted executable
product 214.

The distributed computing system 200 may provide an
integrated environment for a third party software product
vendor to allow encapsulating a software product with
encrypted functionality to avoid hacking and miss-use of the
software product. The distributed computing system 200 may
provide various functionalities such as software integration,
encrypted packaging and run-time protection.

The software product vendor 208 may integrate its devel-
opment environment with the encryption and runtime mod-
ules to allow the product source code to produce encrypted
instead of standard executable machine code. Additionally,
the encryption module may be used to inject into its vendor’s
product executable 210 the required runtime code and data-
structures such as start-up code and the like 212 to provide an
encapsulated encrypted product 214 operable to run on a
client computer system 202 with the desired protected func-
tionality of the vendor’s product.

Accordingly, when the vendor’s product 214 is activated
on the client computer, the injected code interacts internally
with the pre-installed kernel driver, in a kernel-mode context
and communicating with the remote authority server to obtain
the necessary decryption key, allowing for proper function-
ality of the vendor’s software product. Where required, the
injected code may be configured to install the kernel driver, if
kernel driver is not pre-installed.

30

35

40

45

10

It is noted that the system may be used for protection of
gaming software such as war games, sports, gambling and all
other games. Included are games played by a single person,
games played synchronously by multiple players, and games
played non-synchronously by multiple players. In this con-
text, “played synchronously” means either that multiple play-
ers are acting at the same time, or players respond to each
other essentially in real-time.

It is further noted that the distributed computing system
200 may support various software and gaming products oper-
able on various computer operating systems (OS), and may
further include support for communication devices such as
mobile communication devices, handheld devices, tablet
computers and the like.

Accordingly, the distributed computing system 200 may be
operable to share various software applications. Such soft-
ware applications may include, for example, gaming, use of
graphics, picture, video, text, music files supporting various
file formats, multimedia files, combinations thereof or any
other data type files, including data collection files and the
like.

Reference is now made to the flowchart of FIG. 3 repre-
senting selected actions of a method for performing key
exchange communication between a client computer system
and an authority server in a distributed computer system 300.

Executing a protected software function requires a decryp-
tion key for the software on the client computer system side
for decrypting the encrypted section, making the protected
software operable. Such decryption key may be obtained
from an authority server. Thus, when the software code is
executed, the runtime module residing on the client computer
system may be triggered to establish a secured communica-
tion channel with the authority server, over Public Key Infra-
structure (PKI). The authority server may provide the
requested decryption key, based upon a successtul validation
process. The validation process may comprise checking vari-
ous parameters applicable to the target client computer, such
as: target client computer is a “real machine”, not a virtual
machine, emulation or the like; target client computer is run-
ning a known OS kernel; target client computer is clean of
potentially malicious drivers; the user is an authorized/li-
censed customer and a combination thereto.

The secured communication channel over PKI between the
client computer system and the authority server guarantees
the privacy of the information exchanged between the two
entities. The client computer system may communicate 1D
information of the client target computer, identifying the
owner, providing additional target computer environment
parameters and kernel OS version currently running. The
authority server may respond by sending a challenge function
to be executed by the kernel mode driver portion of the client
target computer. The challenge function may involve check-
summing of critical portions of the client target computer’s
memory regions and may be combined with hardware count-
ing of at least two events monitored on the client. Further, the
challenge may monitor several hardware side-effects func-
tionality and VM and hypervisor detection.

Where appropriate, the challenge response may be config-
ured to timeout by the authority server, such that a correct
result within a predetermined period constitutes an initial
proof of the validation process, namely being a real machine
running a known OS kernel. It may further verify that the
correct version of the runtime module is executing on the
client target computer. The challenge code may be generated
by the authority server and may contain a pseudo-random
component, making every challenge different, avoiding any
replay-attacks. The runtime module, as a trusted computer,

US 9,195,821 B2

11

may further verify that client target computer is clean of
potentially malicious drivers, by scanning the target machine
and incorporating the scanning result into the reply to the
server.

Accordingly, by passing the challenge test, the authority
may safely provide services to the entity machine.

The method for performing key exchange communication
between a client computer system and an authority server in
a distributed computer system 300 may include sending an
initiation message of introduction by the client computer
system containing CPU and operating system (OS) param-
eters for identification—step 302; The authority server may
respond to client’s introduction with a message containing its
certificate, virtual mapping parameters and a challenge func-
tion—step 304; which may be run on the client computer
system—step 308 after a timer is activated—step 306
enabling to measure the execution time of the challenge; the
public key encryption may be encapsulated with the results of
the challenge function with additional material transmitted to
the authority server side—step 310; and the encrypted ran-
dom material received on the authority server side, and
decrypted—step 312 as part of the identification process;

It is noted that the client computer system may check the
authority server certificate’s validity period, for example. If
the current date and time are outside of a range, the licensing
process may not go any further.

Reference is now made to the schematic block diagram of
FIG. 4A representing the main components of a client sys-
tem’s CPU 400 configured with kernel driver, operable to
execute encrypted data-blocks combined with superimposed
execution flow steps.

It is noted that the term “client system” refers to any kind of
consumer data unit having a memory region and a region for
processing digital information such as a software program,
blocks of data, or any other digitally stored information
including but not limited to applications such as video, audio,
or gaming programs, and including gaming programs played
synchronously and non-synchronously among two or more
participants.

It is further noted that the superimposed directional
arrowed lines, indicating the encrypted code execution flow,
marked 1 through 4 is further expanded and described here-
inafter in FIG. 4B, in a form of a flowchart.

The processor architecture may allow the CPU to operate
in two modes: kernel mode and user mode and where appro-
priate, hardware instructions allow switching from one mode
to the other. Accordingly, when the CPU is running in user
mode, the CPU may access memory in user space only, and
any CPU attempts to access memory in kernel space, results
in a “hardware exception”. The kernel space is strictly
reserved for running the kernel, kernel extensions, and most
device drivers. Thus, installing the kernel driver in the kernel
space provides the kernel driver with higher priority in man-
aging the protected data-blocks and may have full access to
all memory and machine hardware.

The client CPU system 400 includes main components of a
CPU 420 and a main memory 440 connectable through a
system bus 430. The CPU 420 may further include a Cache
component 422, a CPU Core component 424, CPU set of
registers 426 and CPU TLB (Translation Look-aside Bufter)
428. The main memory 440 may further include the user
space 442 and the kernel space 444, which may optionally be
independent and implemented in separate address spaces.
The user space 442 may contain the encrypted executable
code including the runtime module section 443, while the
kernel space 444 may be hosting the installation of the kernel
driver 445.

10

15

20

25

30

35

40

45

50

55

60

65

12

The CPU Core component 424 may be configured as the
processing unit which reads in instructions to perform spe-
cific actions, while CPU TLB 428 is used to map virtual
addresses to physical addresses, commonly in a form of a
table in the processor memory, enabling faster computing by
allowing the address processing to take place independently
from the normal address-translation pipeline.

The execution flow may start with the loading of the next
encrypted segment 443 to be executed from the user space
442 to the CPU Core 424—step 1; the CPU delegates the
encrypted segment to the kernel driver 445 in the kernel space
444—step 2; the kernel driver then, shuts down pre-emption
and all interrupts, while interacting with CPU registers 426—
step 3; retrieves the decryption key from one of the CPU
registers; and with the retrieved decryption key, optionally
may be retrieved from the authority server (not shown) if not
already stored in one of the CPU registers 426, decrypts the
encrypted segment, placing it into the CPU Cache 422—step
4; allowing the instructions of the decrypted segment to run in
the kernel driver context. Subsequently, the CPU Cache 422 is
discarded and the kernel may restore pre-emption and inter-
rupts.

Reference is now made to the flowchart of FIG. 4B repre-
senting selected actions of a method 450 for executing
encrypted code instructions in the client system’s CPU.

It is noted that the method 450 may be operable on a client
system’s CPU 400 configured with kernel driver as described
hereinabove in FIG. 4A. The method may be used to change
the state of a segment of instructions from an un-executable or
encrypted state to an executable or unencrypted state.

The encrypted instruction code segment may be executed
on the target computer by runtime module upon completion
of'the decryption process. As appropriate, after the authority
server positively validates the target computer, as described
hereinabove, the authority server may transfer the appropriate
decryption key over a PM-secure communication channel.
The distributed computer system may be configured to store
the decryption key in privileged (protected) registers and may
also be configured to monitor and prevent accessing these
registers for the duration of the software execution. The dis-
tributed computer system then disconnects the communica-
tion link to the authority server and execution of the protected
software may commence.

When the CPU reaches an encrypted section in an un-
executable state but that it needs to execute, the runtime
module is invoked, using the obtained decryption key to per-
form the decryption of the machine instructions and to render
the instructions executable.

It is particularly noted that the instructions in the CPU
cache, while in an executable state, the unencrypted instruc-
tions are not stored to memory. The CPU may execute the
decrypted instruction directly from cache, under the context
of'the kernel-mode driver, under no-preemption and all-inter-
rupts-disabled mode. It may subsequently discard the cache
contents just before normal control is returned to the system
software.

The decryption key and decrypted machine-code segments
may be locked in the CPU and may never be placed on the
CPU BUS or stored to external memory. Therefore, malicious
users may only have access to the code whose critical seg-
ments are encrypted. This property of the current disclosure
may prevent the making of copies for unauthorized distribu-
tion or bypassing critical code sections such as license check.

Referring to FIG. 4B, the method for executing encrypted
code instructions in the client system CPU 450 may include
the steps of: loading the encrypted code segment into the CPU
Core (424, F1G. 4A) from the user space (442, FIG. 4A) to be

US 9,195,821 B2

13

executed by the CPU—step 451; the CPU may then delegate
the encrypted code segment to the kernel driver (445, FIG.
4A), residing in the kernel space (444, F1IG. 4A)—step 452; at
this stage, the kernel driver may perform two subsequent
steps: the first one is shutting down pre-emption and all inter-
rupts—step 453 and retrieving the decryption key—step 454
from the authority server (not shown); using the decryption
key to decrypt the encrypted code instructions, placing the
decrypted instruction segment into the memory cache (422,
FIG. 4A)—step 455; executing the decrypted instruction seg-
ment under the kernel driver context—456; and upon comple-
tion of code segment execution, discarding the memory cache
and restoring pre-emption and interrupts—step 457.

Optionally, the decryption key may be obtained from the
authority server (206, FIG. 2) and thereafter stored in a CPU
register (426, F1G. 4A) for further usage. The next request for
adecryption key, may verify the availability of the decryption
key in the CPU register (426, FIG. 4A) and only if not avail-
able, a further request may be issued to the authority server.

Optionally again, the decryption key may be obtained from
the authority server (206, FIG. 2) upon every request for
decrypting an encrypted code segment.

Reference is now made to the flowchart of FIG. 5A pre-
senting selected actions of a method 500A for authenticating
a remote at least one entity machine (the suspect machine).

It is noted that the set of activities for authenticating the
suspect machine, as described in current embodiment, is a set
of activities performed on an authentication server.

It is further noted that measuring the execution time of the
challenge may serve as an indication for the suspect machine
of'being a virtual machine, if execution time exceeds clearly
the expected execution time.

The method 500A for performing remote authentication of
at least one entity machine may include the steps of: gener-
ating at least one authentication challenge function, operable
for execution on the suspect machine—step 510A; comput-
ing an expected challenge result—step 520A for comparison
with the run time result received from the suspect machine,
wherein the referenced expected challenge result may be
generated on an identical machine to the suspect machine;
sending the authentication challenge—step 530A to the sus-
pect machine, for execution; starting timer on the authentica-
tion server side—step 540A, for measuring the challenge
execution time on the suspect machine; receiving the chal-
lenge result—step 550A, from suspect machine; followed by
stopping the timer and recording the challenge execution
time—step 560A; thereafter, performing comparison of the
received challenge result and the expected challenge result—
step 570A; and checking if the comparison is meeting the
comparison criteria—step 580A; thereafter, accepting the
authentication, if said comparison criteria meets expected
criteria—step 590A, otherwise, if said comparison fails the
expected criteria, the authentication may be being rejected—
step S95A.

Reference is now made to the flowchart of FIG. 5B pre-
senting selected actions of a method 500B for executing
authentication challenge on a suspect machine.

It is particularly noted that the execution of the challenge
on the suspect machine includes monitoring a set of at least
two events. Such monitoring of events may use hardware
counters for counting related information.

It is further noted that the flow chart of FIG. 5B shows, by
way of illustration only, monitoring of at least two events.
Accordingly, additional events may further be performed as
may be configured by the authentication challenge.

It may also be noted that the set of events may be monitored
sequentially on a single hardware-counter, or may be moni-

10

15

20

25

30

35

40

45

50

55

60

65

14

tored in parallel on multiple hardware-counters depending on
configuration of the challenge and architecture of the suspect
machine.

The method 500B for executing authentication challenge
on a suspect machine may include the steps of: receiving at
least one authentication challenge—step 510B from an
authentication server; initializing a set of hardware compo-
nents to a known state—step 520B, assigning a hardware-
counter to monitor a first event—step 530B; monitoring the
first event against an event condition—step 530B; continuing
to monitor the specified first event if the event condition is not
met—step 545B; or, if the event condition is met, then switch-
ing the hardware counter to monitor the next specified
event—step 550B; and monitoring the next event against an
updated event condition—step 560B. The iteration is then
repeated any number of times until the authentication chal-
lenge is completed and the final accrued checksum value is
sent to the authentication server.

It is noted that each event condition may be a numeric
threshold value or some other pre-configured condition such
as when multiple hardware counters align according a rule as
described herein to achieve a random sequence of hardware
counter switching.

Reference is now made to the flowchart of FIG. 6 present-
ing selected actions of amethod 600A for generating a check-
sum structure, utilizing various memory regions, additional
hardware counters readings and machine specific registers,
executed on the suspect machine.

The method 600A for generating the checksum structure
may include the steps of: monitoring the memory region
utilizing the software code section—step 610A; monitoring
values of hardware counters—step 620B; and monitoring a
machine specific register (MSR) values—step 630B.

It is noted that steps 610A and steps 620A may form the
basis of the checksum function, validating that the result is
computed on a real machine, rather than a virtual machine
(VM), and that the challenge software is authentic. Thus, it is
particularly noted that the step of 630A of incorporating the
machine specific registers (MSRs) values into the challenge
checksum value, is a particular feature of the current disclo-
sure. Further, the index of the machine specific register
(MSR), to be incorporated into the checksum value may be
derived from the value of the checksum so far, preventing the
potential hacker from substituting the instruction that reads
the MSR with a constant.

Accordingly, determining the appropriate portion of
memory region where the software program is loaded in its
entirety may be required, thereafter computing the checksum
of that memory space, may provide a functionality test that
the desired software program running on the suspect machine
is valid and authentic.

It may further be noted that the set of challenge hardware
counters incorporated into the challenge checksum may
change upon every authentication request.

Checksums may be used to ensure integrity of data portions
and proper functioning verification of data transmission, stor-
age and the like. A checksum is basically a calculated sum-
mary of such data portion and may be used in various imple-
mentations as a mechanism of validity of information, such as
stream channeled information, a downloadable file like JPG
image file, MP3 music file or any file containing information,
memory regions and the like.

The checksum mechanism may run the information con-
tent through a hash function (such as MD5 for files, CRC32,
SHA-1 and others).

Itis noted that the execution of the authentication challenge
with the additional functionality of hardware-counting and

US 9,195,821 B2

15

check-summing, may be incorporated and executed within
the genuinity based scheme (as described hereinabove).

It may further be noted that the authentication challenge
upon execution on the suspect machine, may generate and
structure a challenge result, for comparing with the expected
challenge result.

Additionally, the analysis and comparison of the authenti-
cation result and the expected authentication result may be
performed on the authentication server side.

It is noted that the flowchart of FIG. 6. may represent a
single iteration of calculating the challenge result with vari-
ous parameters, and may be configured to be performed in a
loop, possibly with different values for each iteration.

It is further noted that the checksum computation may be
performed in a non-additive manner, at specific points during
the execution flow of the challenge function.

Where appropriate a cryptographically-secure hash func-
tion may be used to compute the checksum to prevent chang-
ing the instructions to produce a correct checksum.

It may be noted that the value of the EFER register may
affect the checksum challenge computed by the challenge
function. Further, a hypervisor may be identified by the bit
settings of the Extended Feature Enable Register (EFER) of
the CPU machine specific registers (MSR). Accordingly,
upon receiving the challenge result, the authentication server
may not authenticate the hypervisor because the incorrect bit
setting of the EFER register produces an incorrect challenge
result.

Additionally or alternatively, a hypervisor, when intercept-
ing access of other program, may try to hide its presence by
changing the bit setting of the EFER register. Such activity of
a hypervisor may require the CPU to load at least a portion of
the code of the hypervisor into the cache, changing hardware
counters such as Instruction TLB miss count, affecting the
challenge result computed during challenge execution on the
suspect machine. Analyzing the challenge result, on the
server side, may indicate the presence of a hypervisor by
detecting incorrect value of the challenge result.

Reference is now made to the flowchart of FIG. 7A pre-
senting selected actions of a method 700A for analyzing
suspect machine data on the authentication server side, to
determine acceptance or rejection of the suspect machine.

The execution of the challenge on the suspect machine is
aimed at computing a challenge checksum result based on its
architecture and configuration. Returning the challenge result
to the authentication server, in addition to measuring chal-
lenge execution time, allows for further analysis and decision
of acceptance or rejection to be performed.

Virtual machine (VM) detection, within the context of
current disclosure is essential for providing a safe authenti-
cation process to guarantee confidentiality and privacy.

It is noted that the security of virtual machines may be
vulnerable to hacker attacks in various aspects, such as a
hacker taking over a VM using thereafter the VM to attack
other VMs, for example.

Identification of a suspect machine to be a VM may use the
execution of an authentication challenge monitoring at least
two hardware counters to provide a result for comparison
with an expected result. Additionally, lengthy execution time
may indicate the suspect machine as a VM due to the need of
simulating hardware requests, requiring longer execution
time compared to a “real machine” execution time.

Hypervisor detection is based on similar principles as the
VM detection utilizing different hardware components, while
executed on the suspect machine side as described herein-
above in FIG. 6. By incorporating values of some MSRs into
the checksum at some points during the execution of the

10

15

20

25

30

35

40

45

50

55

60

65

16

checksum calculation, the checksum will be altered by the
presence of the hypervisor which is therefore discovered.
Analyzing the challenge result on the server side involves
comparing the validity of the challenge result with an
expected value, allowing to accept or reject the suspect
machine.

The method 700A may include the steps of: setting a chal-
lenge function for execution on suspect machine—step 710A,
allowing to compute a challenge authentication result;
obtaining an expected challenge result for testing—step
720A; sending challenge function to the suspect machine—
step 730A, for execution; and in parallel, measuring the
execution time of the challenge function—step 740A, on the
suspect machine; upon completion of challenge execution on
suspect machine, receiving the challenge authentication
result from the suspect machine—step 750A; testing the
execution time compared to a time limit—step 755A, and if
execution time is within accepted limit, the verification pro-
cess continues, otherwise suspect machine is being
rejected—step 780A; thereafter checking the challenge
authentication result against the expected result—step 760A;
if comparison criteria are met and the checksum comparison
values is positive—step 765A, then the machine is
approved—step 770A; otherwise the machine is rejected—
step 780A.

Technical and scientific terms used herein should have the
same meaning as commonly understood by one of ordinary
skill in the art to which the disclosure pertains. Nevertheless,
it is expected that during the life of a patent maturing from this
application many relevant systems and methods will be devel-
oped. Accordingly, the scope of the terms such as computing
unit, network, display, memory, server and the like are
intended to include all such new technologies a priori.

As used herein the term “about” refers to at least +10%.

The terms “comprises”, “comprising”, “includes”,
“including”, “having” and their conjugates mean “including
but not limited to” and indicate that the components listed are
included, but not generally to the exclusion of other compo-
nents. Such terms encompass the terms “consisting of” and
“consisting essentially of”.

The phrase “consisting essentially of”” means that the com-
position or method may include additional ingredients and/or
steps, but only if the additional ingredients and/or steps do not
materially alter the basic and novel characteristics of the
claimed composition or method.

As used herein, the singular form “a”, “an” and “the” may
include plural references unless the context clearly dictates
otherwise. For example, the term “a compound” or “at least
one compound” may include a plurality of compounds,
including mixtures thereof.

The word “exemplary” is used herein to mean “serving as
an example, instance or illustration”. Any embodiment
described as “exemplary” is not necessarily to be construed as
preferred or advantageous over other embodiments or to
exclude the incorporation of features from other embodi-
ments.

The word “optionally” is used herein to mean “is provided
in some embodiments and not provided in other embodi-
ments”. Any particular embodiment of the disclosure may
include a plurality of “optional” features unless such features
conflict.

Whenever a numerical range is indicated herein, it is meant
to include any cited numeral (fractional or integral) within the
indicated range. The phrases “ranging/ranges between” a first
indicate number and a second indicate number and “ranging/
ranges from™ a first indicate number “to” a second indicate
number are used herein interchangeably and are meant to

US 9,195,821 B2

17

include the first and second indicated numbers and all the
fractional and integral numerals there between. It should be
understood, therefore, that the description in range format is
merely for convenience and brevity and should not be con-
strued as an inflexible limitation on the scope of the disclo-
sure. Accordingly, the description of a range should be con-
sidered to have specifically disclosed all the possible sub-
ranges as well as individual numerical values within that
range. For example, description of a range such as from 1 to
6 should be considered to have specifically disclosed sub-
ranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to
4, from 2 to 6, from 3 to 6 etc., as well as individual numbers
within that range, for example, 1, 2, 3, 4, 5, and 6 as well as
non-integral intermediate values. This applies regardless of
the breadth of the range.

It is appreciated that certain features of the disclosure,
which are, for clarity, described in the context of separate
embodiments, may also be provided in combination in a
single embodiment. Conversely, various features of the dis-
closure, which are, for brevity, described in the context of a
single embodiment, may also be provided separately or in any
suitable sub-combination or as suitable in any other described
embodiment of the disclosure. Certain features described in
the context of various embodiments are not to be considered
essential features of those embodiments, unless the embodi-
ment is inoperative without those elements.

Although the disclosure has been described in conjunction
with specific embodiments thereof, it is evident that many
alternatives, modifications and variations will be apparent to
those skilled in the art. Accordingly, it is intended to embrace
all such alternatives, modifications and variations that fall
within the spirit and broad scope of the appended claims.

All publications, patents and patent applications men-
tioned in this specification are herein incorporated in their
entirety by reference into the specification, to the same extent
as if each individual publication, patent or patent application
was specifically and individually indicated to be incorporated
herein by reference. In addition, citation or identification of
any reference in this application shall not be construed as an
admission that such reference is available as prior art to the
present disclosure. To the extent that section headings are
used, they should not be construed as necessarily limiting.

The scope of the disclosed subject matter is defined by the
appended claims and includes both combinations and sub
combinations of the various features described hereinabove
as well as variations and modifications thereof, which would
occur to persons skilled in the art upon reading the foregoing
description.

What is claimed is:

1. A method for use in a system comprising an authentica-
tion server authenticating at least one entity machine, the
method comprising:

generating at least one authentication challenge;

obtaining an expected challenge result comprising a calcu-

lated result for said at least one authentication challenge,
at least one hardware count value and an execution time
threshold value;

sending said authentication challenge to said at least one

entity machine;

starting a timer;

receiving a challenge result from said entity machine;

stopping said timer thereby recording an execution time for

said entity machine;

rejecting said entity machine if said execution time is

longer than said execution time threshold value;
comparing said received challenge result with said
expected challenge result; and

10

20

25

30

35

40

45

50

55

60

65

18

rejecting said entity machine if said received challenge
result does not match said expected challenge result;
wherein said at least one hardware count value comprises a
combined count value of at least two events monitored by
performance hardware counters on said entity machine dur-
ing execution of said authentication challenge.

2. The method of claim 1, wherein said a combined count
of at least two events, further comprises the steps of:

initializing a set of hardware components to a known state;

assigning a hardware-counter to count a first event during
execution of said at least one authentication challenge;

monitoring said first event against an event condition; and

switching said hardware-counter to monitor at least a sec-
ond event, when said hardware-counter meets said event
condition.

3. The method of claim 2, wherein said a combined count
of at least two events, further comprises the steps of:

updating said event condition to match switched said hard-

ware-counter; and

incorporating final hardware-counter readings into said

challenge result.

4. The method of claim 2, further comprising:

monitoring an n” event against an n” event condition; and

switching said hardware-counter to monitor at least an

(n+1)” event, when said hardware-counter meets said
n™ event condition.

5. The method of claim 4, wherein said a combined count
of at least two events, further comprises the step of updating
said event condition to match switched said hardware-
counter.

6. The method of claim 2, wherein said event condition is
configured to be a threshold value associated with a specific
event.

7. The method of claim 2, wherein said event condition is
configured to be a pre-determined condition associated with a
specific event.

8. The method of claim 5, wherein said event condition is
configured to be a threshold value associated with a specific
event.

9. The method of claim 5, wherein said event condition is
configured to be a pre-determined condition associated with a
specific event.

10. The method of claim 1, wherein at least one of said
events monitored on said entity machine is an event affected
by the presence of a hypervisor such that if a hypervisor is
present, said received challenge result will not match said
expected challenge result and said entity machine is rejected.

11. The method of claim 1, wherein at least one of said
events monitored on said entity machine comprises amachine
specific register.

12. The method of claim 1, wherein said expected chal-
lenge result is generated by executing said authentication
challenge on a machine identical to said entity machine.

13. A method for use in a system comprising an authenti-
cation server for authenticating a suspect machine, the
method comprising:

setting a challenge function to be executed on a suspect

machine within a time limit;

computing an expected challenge result;

transmitting said challenge function to said suspect

machine;

measuring an execution time of said challenge function;

receiving a challenge result from said suspect machine;

comparing received challenge result with the expected
challenge result; and

US 9,195,821 B2

19

accepting said suspect machine if said challenge result
matches said expected challenge result and said execu-
tion time is less then said time limit;
wherein said challenge function includes monitoring at least
two hardware counting events, monitored by at least one
performance hardware counter of a similar machine.
14. The method of claim 10, wherein said challenge func-
tion, comprises the steps of:
initializing a set of hardware components to a known state;
using a hardware-counter to count a first event during
execution of said challenge function;
monitoring said hardware counter against an event condi-
tion;
switching said hardware-counter to monitor at least a sec-
ond event, when said hardware-counter meets said event
condition; and
updating said event condition to match switched said hard-
ware-counter.
15. The method of claim 11, wherein said event condition
is a threshold value associated with a specific event.
16. The method of claim 11, wherein said event condition
is a pre-determined condition associated with a specific event.

#* #* #* #* #*

10

15

20

20

